近日,中国科学院空天信息创新研究院遥感科学国家重点实验室研究员王树东带领的生态水文遥感团队,在灌溉用水估算领域取得重要进展。该研究团队提出一种基于机器学习和遥感观测数据的全国尺度灌溉用水量估算模型,并基于该模型揭示了未来气候变化情景下中国灌溉用水的变化趋势和经济影响。
据了解,灌溉农田约占全球耕地面积的20%,贡献了40%以上的粮食产量。中国拥有全球最大面积的灌溉农田,占中国耕地面积的一半以上,灌溉用水对作物生长和产量至关重要,尤其是在水资源短缺的地区,频繁的干旱和极端气温可能加剧其影响。因此,在全球气候变化导致粮食安全日益受到挑战的背景下,准确估算灌溉用水变化对于制定最优的水资源分配政策的重要性日益凸显。
现有的灌溉用水估算方法,受到数据可用性和模型结构的约束,在全国尺度和未来气候变化情景下适用性差。基于此,该研究团队开发了基于机器学习的新模型,通过整合一系列高精度水文要素卫星遥感产品、气象驱动因子、经济统计数据和数值模型模拟,在数据驱动框架下估算全国尺度的灌溉用水。新模型在估算灌溉用水方面表现出较高的准确性。通过11个农田站点的独立观测验证,模拟数据与实地观测数据具有显著相关性,准确率达90%以上。
市科协供稿